
Phylogenetic Generalized Least Squares in R

Here we give an example PGLS analysis using a tree and data from the ade4 package. We analyse the data
using functions from the ape and nlme packages. There are several other ways to conduct PGLS analyses in R,
most notably using the pgls function in the caper package. We choose to present an analysis using nlme as this
is mature, general purpose software with useful “helper” functions, and it ships with the base R distribution.

The first step in any analysis is to import your tree and data into R. For most purposes, the R functions
read.table and read.tree from the ape package will suffice. Typical programming commands would be:

library(ape)

dat <- read.table("myDataFile.csv", header=TRUE, sep=",") # import a comma-delimited

(csv) file with column headings

tree <- read.tree("MyNewickTree.phy") # import a Newick format tree

Where the data and tree files, myDataFile.csv and MyNewickTree.phy, are assumed to be in the user’s
working directory. Package ape also has a function for reading Nexus files, read.nexus, which is another
popular tree file format. For demonstration purposes in this tutorial, we will use a tree and data from the ade4

package. Consider the following life history data and tree (including branch lengths) for 18 species of lizards:

library(ade4) # source of example data and tree

library(ape) # tree handling

library(nlme) # regression modelling

data(lizards)

tree <- read.tree(text = lizards$hprA)

dat <- lizards$traits[tree$tip.label,] # sort data according to tree

plot(tree, main = "Phylogeny for 18 Lizard Species", direction = "up", srt = -90,

label.offset = 1)

Phylogeny for 18 Lizard Species

Sa Sh Tl Mc My Ph Pg Pa Pb PmAe Tt Ts Zo Zv La Ls Lv

1

head(dat) # just the first few lines of data

mean.L matur.L max.L hatch.L hatch.m clutch.S age.mat clutch.F

Sa 69.2 58 82 27.8 0.572 6.0 13 1.5

Sh 48.4 42 56 22.9 0.310 3.2 5 2.0

Tl 168.4 132 190 42.8 2.235 16.9 19 1.0

Mc 66.1 56 72 25.0 0.441 7.2 11 1.5

My 70.1 60 81 26.6 0.550 5.4 10 1.0

Ph 49.6 39 57 23.8 0.310 2.1 8 2.0

Suppose we were interested in the regression of length at maturity on age at maturity. If we were to assume
a Brownian motion model of evolution, then we could construct the phylogenetic correlation matrix implied by
the tree, and then use that in a call to the gls function in the nlme package:

mat <- vcv(tree, corr=TRUE) # construct matrix

fit <- gls(matur.L ~ age.mat, correlation=corSymm(mat[lower.tri(mat)],fixed=TRUE), data=dat)

There are several things to note:

• The vcv function computes a covariance matrix by default, and a correlation matrix with argument
corr=TRUE.

• The gls function works like the other regression functions in R, except that it has a correlation argu-
ment.

• The lower triangle of the correlation matrix is passed to the corSymm function, which specifies a gen-
eral symmetric correlation matrix. Since we are not estimating any parameters in this matrix, we set
fixed=TRUE, telling gls that the correlation matrix is fixed for the duration of the parameter optimiza-
tion.

• This analysis assumes that the tree is ultrametric, meaning that the tips of the tree all line up. They do
in this case, but it is easy to imagine cases where this might not be so. (e.g. inclusion of extinct species
or certain branch length transformations). The solution is to use the weights argument to gls:

tip.heights <- diag(mat)

fit <- gls(matur.L ~ age.mat, correlation = corSymm(mat[lower.tri(mat)], fixed = TRUE),

weights = varFixed(~tip.heights), data = dat)

See this article for further explanation. The ape package has several other correlation structures for use with
gls. The simplest is corBrownian, which fits the same model as above:

fit2 <- gls(matur.L ~ age.mat, correlation=corBrownian(phy=tree), data=dat)

anova(fit, fit2) # models are the same

Model df AIC BIC logLik

fit 1 3 172.4 174.8 -83.22

fit2 2 3 172.4 174.8 -83.22

Using corBrownian is simpler than using corSymm since all you need to tell it is the name of the tree. You
do not need to mess with the correlation matrix directly.

We can do some basic diagnostic plots to see if the model departs from the usual regression assumptions. In
particular, we can look at the residuals versus the fitted values to check for heteroscedasticity and/or curvature,
and a quantile-quantile plot of the (normalized) residuals to check for departures from the assumption of
Normally-distributed residuals:

2

https://stat.ethz.ch/pipermail/r-sig-phylo/2008-June/000125.html

plot(fit2, resid(., type="n")~fitted(.), main="Normalized Residuals v Fitted Values",

abline=c(0,0))

res <- resid(fit2, type="n")

qqnorm(res)

qqline(res)

Normalized Residuals v Fitted Values

Fitted values

N
or

m
al

iz
ed

 r
es

id
ua

ls

0

1

2

3

40 50 60 70 80

−2 −1 0 1 2
0

1
2

3

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Note that the plots look pretty good, except for perhaps one outlier. We could re-examine the original data to
see if there was a mistake or something unusual about that species. One option is then to exclude that species
from the analysis. Re-running the analysis without the outlier (species “Pg”):

res[which.max(res)] # species with largest residual (outlier)

Pg

3.762

dat3 <- dat[-which(rownames(dat) == "Pg"),]

tree3 <- drop.tip(tree, "Pg")

fit3 <- gls(matur.L ~ age.mat, correlation=corBrownian(phy=tree3), data=dat3)

Normalized Residuals v Fitted Values

Fitted values

N
or

m
al

iz
ed

 r
es

id
ua

ls

−1

0

1

2

50 60 70 80

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

3

Both plots look a lot better. Now we can get some summary information about the model:

summary(fit3)

Generalized least squares fit by REML

Model: matur.L ~ age.mat

Data: dat3

AIC BIC logLik

138.6 140.7 -66.31

##

Correlation Structure: corBrownian

Formula: ~1

Parameter estimate(s):

numeric(0)

##

Coefficients:

Value Std.Error t-value p-value

(Intercept) 27.616 21.545 1.282 0.2194

age.mat 2.902 1.436 2.021 0.0616

##

Correlation:

(Intr)

age.mat -0.727

##

Standardized residuals:

Min Q1 Med Q3 Max

-0.5715 -0.3228 -0.1223 0.1508 1.7016

##

Residual standard error: 28.94

Degrees of freedom: 17 total; 15 residual

We see that the slope of the relationship between length at maturity and and age at maturity is 2.902, and
this is not quite significant with p = 0.0616. This means that for every unit increase in age at maturity, there
is an associated increase of 3 units in length at maturity. Later maturing species are longer at maturity.

Perhaps we are concerned about the amount of phylogenetic “signal” in our data. The observed data may
not have evolved under a Brownian motion model. (NB: All models are wrong.) Instead, we may include an
extra parameter in the correlation matrix to effectively account for error in branch-length estimation. Our new
matrix is then a function of the tree and this new parameter: NewMatrix = f(tree, parameter). Package
ape supplies four single-parameter correlation structures for use with function gls. These are corPagel,

corGrafen, corMartins and corBlomberg. Each correlation structure constructs the correlation matrix in
a different way. The simplest is corPagel, where there is a parameter (λ) that multiplies the off-diagonals
of the Brownian motion correlation matrix. λ can range from zero (no phylogenetic signal, equivalent to a
“star” phylogeny), to one (consistent with Brownian motion). Intermediate values imply that the data support
a model that is somewhere between a “star” phylogeny and Brownian motion. λ represents the amount of
phylogenetic “signal” in the data, conditional on the tree. In a regression context, we can use the method of
(restricted) maximum likelihood to simultaneously fit the regression model and estimate λ, which represents
the phylogenetic signal in the residuals. We can also get a confidence interval for λ and perform tests of the
hypotheses λ = 0 and λ = 1.

4

fitPagel <- gls(matur.L ~ age.mat, correlation=corPagel(value=0.8, phy=tree3), data=dat3)

intervals(fitPagel, which="var-cov")

Approximate 95% confidence intervals

##

Correlation structure:

lower est. upper

lambda 0.49 0.899 1.308

attr(,"label")

[1] "Correlation structure:"

##

Residual standard error:

lower est. upper

11.76 21.88 40.72

We can get direct tests of the hypotheses λ = 0 (independence) and λ = 1 (Brownian motion) by fitting
models that are forced to have λ = 0 (independence) and λ = 1 (Brownian motion) and then comparing them
with a likelihood ratio χ2 test.

fitPagel0 <- gls(matur.L ~ age.mat, correlation = corPagel(value = 0, phy = tree3,

fixed = TRUE), data = dat3) # independence

fitPagel1 <- gls(matur.L ~ age.mat, correlation = corPagel(value = 1, phy = tree3,

fixed = TRUE), data = dat3) # Brownian motion

anova(fitPagel, fitPagel0)

Model df AIC BIC logLik Test L.Ratio p-value

fitPagel 1 4 140.2 143.0 -66.08

fitPagel0 2 3 137.8 139.9 -65.91 1 vs 2 0.3439 0.5576

anova(fitPagel, fitPagel1)

Model df AIC BIC logLik Test L.Ratio p-value

fitPagel 1 4 140.2 143.0 -66.08

fitPagel1 2 3 138.6 140.7 -66.31 1 vs 2 0.4578 0.4987

We see that the likelihood ratio χ2 tests comparing our “free-floating” λ model with a model that has λ fixed
at zero or one have p-values of 0.5576 and 0.4987, respectively. Thus, we cannot reject the null hypothesis
of “independent residuals” or Brownian motion. Why then does the confidence interval on λ not include zero?
Correct estimation of λ is difficult with such a small sample size. This can be seen by running the gls analysis
with different starting values for λ. The optimal lambda converges to values that are either 0.899 or less than
zero. One can get an impression of the estimation of λ by plotting the model likelihood for various fixed values
of λ:

lambda <- seq(0, 1, length.out = 500)

lik <- sapply(lambda, function(lambda) logLik(gls(matur.L ~ age.mat,

correlation = corPagel(value = lambda, phy = tree3, fixed = TRUE),

data = dat3)))

plot(lik ~ lambda, type = "l", main = expression(paste("Likelihood Plot for ",

lambda)), ylab = "Log Likelihood", xlab = expression(lambda))

abline(v = fitPagel$modelStruct, col = "red")

5

0.0 0.2 0.4 0.6 0.8 1.0

−
66

.4
−

66
.2

−
66

.0

Likelihood Plot for λ

λ

Lo
g

Li
ke

lih
oo

d

We can see that for starting values for λ less than about 0.7, numerical optimization will be drawn towards
λ ≤ 0. Otherwise, the optimization will be drawn towards λ = 0.899. This value is indicated by the red line.
With data for more species, we may be able to better estimate λ. This is a warning about the difficulty of
parameter estimation with small sample sizes.

We would like to construct a plot of the relationship between length at maturity and age at maturity, and
include the trend line:

with(dat3, plot(matur.L ~ age.mat, xlab = "Age at Maturity", ylab = "Length at Maturity",

main = "Length at maturity versus \nage at maturity for 17 lizard species"))

abline(fitPagel)

6 8 10 12 14 16 18

40
60

80
10

0
12

0

Length at maturity versus
age at maturity for 17 lizard species

Age at Maturity

Le
ng

th
 a

t M
at

ur
ity

6

Up until now we have concentrated on estimating λ as part of a regression analysis. We may also want to
know the value of λ for a single trait. This is just a matter of fitting an intercept-only model. Here we do it for
all the variables in the dataframe:

set up matrix to hold the results

mat <- matrix(NA, ncol=3, nrow=(dim(dat3)[2]),

dimnames=list(variable=names(dat3),

c("Lower" , "Estimate", "Upper")))

for (i in 1:(dim(dat)[2])) { # loop through each variable

form <- formula(paste(names(dat)[i], " ~ 1")) # construct the model formula

this.fit <- gls(form, data=dat,

correlation=corPagel(0.1, phy=tree),

control=glsControl(opt="optim")) # fit the model

ints <- try(intervals(this.fit)$corStruct) # get lambda and confidence interval

if there is an error, just get the point estimate and set the confidence limits to NA

if (inherits(ints, "try-error")) ints <- c(NA, coef(this.fit$modelStruct), NA)

mat[i,] <- ints # save the results in the matrix

} # end loop

Lambda for each variable:

mat

##

variable Lower Estimate Upper

mean.L 0.9502 0.9820 1.014

matur.L 0.9382 0.9779 1.018

max.L 0.9571 0.9853 1.014

hatch.L 0.8832 0.9582 1.033

hatch.m 0.9780 0.9929 1.008

clutch.S 0.8927 0.9637 1.035

age.mat NA 1.0005 NA

clutch.F NA 1.0000 NA

There are a few things to note:

• We constructed the model formula “on the fly” using the formula and paste functions. This is a useful
technique if you need to fit many different regressions using different combinations of response and/or
explanatory variables.

• We used a call to glsControl to change the optimizer for the fit. Sometimes this can improve convergence.

• We used the try function to catch errors. Sometimes a point estimate for λ can be obtained, but if the
associated variance-covariance matrix is not positive-definite, it will not be possible to estimate confidence
limits (and there will be an error). Hence we told R that if there was an error, just report the point estimate
for λ and leave the confidence limits as NA, ie missing values.

Estimates of λ for all the variables are very close to one, indicating considerable phylogenetic “signal” in these
variables.

7

Rarely, there will be information external to the data relating to the value of λ. That is, λ may be known.
It is easy to use a pre-specified value for λ. Simply pass it to the corPagel function with the value argument,
along with the argument fixed=TRUE:

new.lambda <- 0.7 # pre-specified lambda value

fitPagel4 <- gls(matur.L ~ age.mat, correlation = corPagel(value = new.lambda,

fixed = TRUE, phy = tree3), data = dat3)

fitPagel4

Generalized least squares fit by REML

Model: matur.L ~ age.mat

Data: dat3

Log-restricted-likelihood: -66.16

##

Coefficients:

(Intercept) age.mat

9.886 4.532

##

Correlation Structure: corPagel

Formula: ~1

Parameter estimate(s):

lambda

0.7

Degrees of freedom: 17 total; 15 residual

Residual standard error: 18.73

Note that it is a mistake to first estimate λ for a trait, and then use it in a subsequent analysis of the same
data set. This is because the (restricted) maximum likelihood estimate of λ for a single trait may be a poor
estimate of λ when applied to the residuals of a more complex model, such as a regression model. It makes
sense to estimate λ and the regression parameters together so that the λ that is estimated is the (restricted)
maximum likelihood estimator for the full data and model.

It is useful to know how the tree changes when different values of λ are applied to it. Below are six versions
of the original tree after transformation. The code uses the vcv2phylo function to convert back from a matrix
to a tree, and requires the matrixcalc package:

library(matrixcalc)

source("vcv2phylo.R") # load in the code for vcv2phylo

ll <- seq(1, 0, by = -0.2)

mats <- sapply(ll, function(x) corMatrix(Initialize(corPagel(x, phy = tree),

data = dat)), simplify = FALSE)

trees <- lapply(mats, vcv2phylo)

class(trees) <- "multiPhylo"

par(mfrow = c(2, 3), mar = rep(1, 4))

for (i in 1:length(ll)) plot(trees[[i]], main = substitute(paste(lambda, " = ",

ll), list(ll = ll[i])), direction = "upwards", show.tip.label = FALSE)

8

λ = 1 λ = 0.8 λ = 0.6

λ = 0.4 λ = 0.2 λ = 0

We can see that λ = 1 is just the original tree. Decreasing values of λ lengthen the terminal branches
and compress the internal branches. λ = 0 shrinks all the internal branches to length zero, producing a star
phylogeny. It is left as an exercise for the reader to show the effect of other single-parameter transformations
on the tree.

9

